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Abstract
In this paper doubly degenerate defect states in the band gap of the two-
dimensional photonic crystal are studied. These states can be split by a
convenient distortion of the lattice. Through analogy with the Jahn–Teller
effect in solids, we present a group theoretical analysis of the lifting of the
degeneracy of doubly degenerate states in a square lattice by different vibronic
modes. The effect is supported by the supercell plane-wave model and by the
finite difference time domain technique. We suggest ways for using the effect
in photonic switching devices and waveguides.

Photonic crystals are of importance for numerous applications involving light modulation [1].
One such useful system based on photonic crystals is the high-Q photonic band gap (PBG)
resonant cavity that can be realized by introducing a point defect into an otherwise regular
photonic lattice which induces the existence of exponentially decaying states that appear within
the stop band.

Interest in the construction of active tunable elements has led to the idea of introducing
interactions into an otherwise perfect periodic photonic crystal. Interaction effects in the
photonic crystals may be realized in two ways. The first is the coulombic interaction which,
in the case of the photonic crystal, implies nonlinear optical behaviour [2]. Another possible
interaction is photon–vibration interaction, which should appear in a photonic crystal subject
to mechanical vibrations [3]. It has been reported [4] that tuning the driving frequency of
vibrations to the frequency of interband transition leads to coupling of the optical modes.

In this paper we propose yet another principle that is potentially useful in the design of
active elements. In particularly, we are interested in splitting the degeneracy of the defect state
by means of Jahn–Teller distortion of the lattice. The splitting of a degenerate state by some
lowering symmetry perturbation is well known. For two-dimensional photonic crystals this
was discussed in [5]. The aim of this paper is to study the splitting of the degenerate defect
state due to Jahn–Teller distortion of the lattice and to give insight into the tuning characteristic
of the defect mode.

A close analogy between defect electron states in the energy band gap of semiconductors
and defect states inside the photon band gap of the defect photonic crystals allows one to expect
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the Jahn–Teller effect in photonic crystals. The first step is to present Maxwell’s equations for
a photonic crystal subject to vibrations with a driven frequency ω in a Schrödinger-like form
i ∂
∂ t Ψ = HΨ, where we define a wavefunction and Hamiltonian H as

Ψ =
[

D
H

]
, H =

[
0 i∇×

−i∇ × 1
ε(r+R(t)) 0

]
. (1)

Here we consider a magnetic neutral medium where µ = 1, D is the electric displacement
field, H is the magnetic field, and R(t) describes the displacement of the dielectric rods such
that R(t) = ∑

l Rleiωt , where l goes over the all sites of the photonic lattice. In the first
approximation of the perturbation theory we assume that the amplitude of the vibrations is
much less than the lattice constant. We can then present the Hamiltonian H as a sum of the
unperturbed Hamiltonian H0 and perturbation potential V :

H = H0 + V =
(

0 i∇×
−i∇ × 1

ε(r)
0

)
+

(
0 0

i∇ × δε
ε(r)2 0

)
, (2)

where δε = ∂ε
∂r

|0R(t) (the index 0 shows that the derivative is taken at zeroth displacement).
In the frame of time-dependent perturbation theory for non-Hermitian perturbation potential
V [3], we are interested in removing the degeneracy of a defect state due to coupling with
the vibronic mode. So, we are looking for a solution of the Schrödinger equation as an
extension over unperturbed states �

(0)
i that describes the degenerate state with frequency ω0,

i.e. � = ∑
i ai(t)�

(0)

i , where ai(t) are time-dependent coefficients. We arrive at

i
∂a j (t)

∂ t
=

∑
i

ai(t)Vi j eiωt , (3)

where Vi j = 〈�(0)
i |V |�(0)

j 〉 = −ω0
∫

δε
ε
H

(0)∗
i · H

(0)
j dr. Since all �

(0)
i wavefunctions

represent just the same energy state, the resonance condition will be the case if the driven
frequency ω = 0. This corresponds to a frozen vibronic mode. But this effect will be realized
if and only if the matrix elements Vi j do not equal zero.

To be more specific, we consider a two-dimensional photonic crystal with a square lattice
of dielectric rods in vacuum and doped by a defect rod that is characterized by a radius of
different magnitude. The point group symmetry of the square lattice is C4v. If the defect
rod is localized in the site of the lattice then by symmetry it may be described both by one-
dimensional A1,2, B1,2 and two-dimensional E irreducible representations of the group C4v [6].
A one-dimensional irreducible representation results in a non-degenerate photon state. The
two-dimensional representation results in a doubly degenerate state, which is the state to be
considered here.

We consider a photonic crystal subject to vibrations. All lattice vibrations can be presented
in terms of the normal coordinates as a sum of the normal irreducible vibrations α, then
vibronic perturbation can be extended over normal vibrations δε(r) = ∑

α Rα · ∂ε
∂r

|0 [7]. Each
normal vibration α is determined by the symmetrized displacements Rα and the so-called
deformation potential ∂ε

∂r
. By symmetrized displacements we mean collective (concerted)

nuclear displacements which, under the symmetry operations of the molecular point group,
transform according to one of its irreducible representations. They can be found easily using
group theory methods. For a two-dimensional square lattice with the defect on a lattice site, by
molecular we mean the cell composed of the dielectric rods nearest to the defect. In this case,
there can be 2A1, B1, 2B2 and 2E normal irreducible vibrations of the lattice. The A1 normal
vibration is a total symmetrical vibration, while the B1 and B2 modes are antisymmetrical
normal vibrations described by one-dimensional irreducible representations [7]. The E mode
of the normal vibrations are characterized by a two-dimensional irreducible representation with
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the 1 × 2 basis vector, the components transforming one through another [7]. As follows from
Jahn–Teller theorem [7], to split the doubly degenerate E photonic state the matrix element of
the corresponding vibronic mode α is

V α
i j = −ω0

∫
H

(0)E∗
i (r) · V (r,Rα)H

(0)E
j (r) dr �= 0. (4)

Here V (r,Rα) = 1
ε
Rα · ∂ε

∂r
is a perturbation potential caused by the corresponding normal

vibrations α and described by the symmetry of the normal displacements. From the symmetry
analysis, this matrix element is nonzero if and only if E×E = α. Since, E2 = A1 + A2 + B1 + B2,
only the perturbations with the symmetry of the A1, B1 and B2 normal vibrations can shift the
degeneracy of the E defect mode.

In accordance with group theoretical analysis, the eigenvectors of the doubly degenerate
E state are represented as two 1 × 2 column vectors with components that transform as vectors
in the x and y directions. For electronic states in solids, they are usually presented as px and py

orbitals. It is known [6] that the defect E modes have the shape of the px and py functions. Thus,
we can specify the unperturbed wavefunctions of the E state as functions with the symmetry
of px and py orbitals. In this case, the matrix elements of the vibronic perturbation with the
symmetry of the α-mode are written as

V α
i j ∼

∫
pi(r)V (r,Rα)p j(r) dr. (5)

For the case of the total symmetrical vibration A1, V A1
xx = V A1

yy and V A1
xy = 0. Solving

equation (2) with these matrix elements, we find that the interaction of the photonic E state
with the A1 vibration results in an equal shift of the doubly degenerate state without lifting
the degeneracy. The situation is different for the case of the antisymmetric B1,2 modes. For
the B1 mode, V B1

xx = −V B1
yy and V B1

xy = 0. As a result, the degeneracy of the E-photonic mode

is removed, resulting in two levels ω
B1
1,2 = ω0 ± V B1

xx . For the B2 mode, V B2
xx = V B2

yy = 0 and

V B2
xy = V B2

xy . This results in the two split levels ω
B2
1,2 = ω0 ± V B2

xy .
From this analysis we note the following. First, because of the linear dependence of the

perturbative potential on the amplitude of vibration (V α
i j ∼ |Rα|), the splitting of the doubly

degenerate level should show a linear scaling with the magnitude of the lattice distortion
through a scaling coefficient called the constant of vibronic coupling (or vibronic constant).
Second, vibronic constants corresponding to different vibronic modes α are determined by
different matrix elements V α

i j . For the case of the B1 mode, this is a diagonal matrix element
V B1

xx . For the B2 mode, the splitting is determined by the non-diagonal matrix element V B2
xy . It

is natural to expect that the relative magnitudes of the shift of the defect mode will be greater
for the case of the coupling defect state for the B1 mode than for the B2 mode.

Now, we provide numerical support for the static Jahn–Teller effect. We will present
supercell plane-wave and finite difference time domain (FDTD) calculations of the two-
dimensional defect crystal. As a model crystal we consider a square photonic crystal of
dielectric rods, embedded in air, with lattice constant a, rod radius r = 0.2a and dielectric
constant εr = 11.9. Here, only modes with odd (TM-like) symmetry are considered, since this
is the symmetry of the bands that exhibit a gap for the square lattice. We study the defect state
created by the defect rod with radius rd = 0.3a and the same dielectric constant εd = 11.9
as the other rods. Namely, we are interested in the doubly degenerate defect state that, in
this case, lies inside the first band gap. To simplify analysis of the effect studied, we take the
amplitudes of the rod dispacements |Rα| as being non-zero for only the nearest neighbours of
the defect rod. We consider distortions of the lattice within the limits �r = 0–0.3a, keeping
in mind that only small distortions (�r � a) allow application of the linear approximation of
the vibronic potential (equation (2)).
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Figure 1. The supercell plane-wave spectrum of the defect photonic crystal coupled with the B1
(solid curve) and B2 (dashed curve) vibronic modes for rod displacement magnitude �r = 0.1a.
The dotted curve shows the doubly degenerate defect level in the unperturbed system.

The supercell plane-wave calculations of the defect state have been performed using the
usual technique [8]. To test our data, we worked with supercells that included 8 and 16 rods.
The calculations were performed with N = 1225 plane waves. For frequencies inside the first
band gap, the data showed good convergence and relative error less than 1%. Small dispersion
(<0.05%) of the impurity band provides evidence for the small overlap between defect modes
in the neighbouring cells.

In figures 1 and 2 we present the supercell plane-wave calculations of the static Jahn–Teller
splitting effect for the B1,2 vibronic modes. Figure 1 shows the plane-wave spectrum of the
defect mode for a magnitude of distortion �r = 0.1a. The dotted line shows the defect level
in the unperturbed system. Figure 2 presents the distribution of the electric field for both the
split states, for the cases of B1 mode (a), (b) and B2 mode (c), (d). The Jahn–Teller cell with
nearest-neighbour displacements corresponding to the central defect is shown in figure 2.

To get the defect spectrum using the FDTD technique [9], we have followed the approach
developed in [10]. Our computational domain contained 7 × 7 unit cells, with the defect
localized at the centre. Each unit cell was divided into 20 × 20 discretization grid cells.
The computational domain was surrounded by perfect matched layers, with a thickness
corresponding to ten layers of the discretization grid. The total number of time steps was
80 000, where each time step �t = 1/(2�xc). To ensure the convergence of our data,
especially for small distortions of the lattice, we have performed calculations for a cell divided
into 40 × 40 discretization grid cells. For this case, the number of perfectly matched layers was
taken to be 20 layers of the discretization grid. The total number of time steps was 200 000.
The analysis showed that the error in our calculations is less than 1%.

The FDTD calculations of the defect level splitting due to static Jahn–Teller distortion are
shown in figure 3. We present the Fourier transform of the transmission spectrum intensity
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Figure 2. The distribution of the electric field intensity for two split defect modes: for the cases
of coupling with the B1 mode (a), (b) and B2 mode (c), (d). The Jahn–Teller cell with nearest-
neighbour displacements corresponding to the central defect is shown.

for the defect mode’s Jahn–Teller splitting through the B1 and B2 modes for a magnitude of
distortion �r = 0.1a. The defect spectrum of the unperturbed system (�r = 0) is shown
by the dotted curves. The corresponding distributions of electric field for the two split modes
are the same as that from the supercell plane-wave calculation (figure 2) and are therefore
not repeated here. Since the intensity of the electric fields is symmetrical with respect to the
Cartesian x- and y-axes (figure 2), centred on the defect, the Fourier amplitude of the defect
spectrum depends on the point where the output data is collected. For example, for the B1

mode, if we collect the data on the x axis, then only the px state is manifested in the Fourier
spectrum (figure 3, dashed curve). If we collect the data on the y-axis, only the py state is
noted (figure 3, dashed–dotted curve). If the collecting point is selected on the line x = y,
then both px and py states are seen in the defect spectrum. In this case, the Fourier spectrum
overlaps completely with both peaks.

For the case of the B2 mode, the field distributions of the electric field are directed along
x = y and −y lines (figures 2(c), (d)). So, if we are watching the defect spectrum on the
line x = y, then we can see only the state with field distribution directed along x = y line
(figure 3, dashed curve). If we collect the data on the x = −y line, then we can see only
the state directed along x = −y line (figure 3, dashed–dotted curve). Finally, if we collect
the data at any other point (e.g. on the curve x = 0) then we can see both these states. We
conclude that it is possible to manipulate the symmetry of the split photonic states of the defect
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Figure 3. FDTD calculations of the defect photonic crystal coupled with the B1 and B2 vibronic
modes for a rod displacement magnitude of �r = 0.1a. The Fourier spectrum of the defect states
coupled with the B1 (B2) mode, shown by the dashed and dashed–dotted curves, correspond to the
data collecting points on the x-axis (the curve x = y) and y-axis (the curve x = −y), respectively.

level by choosing (a) appropriate distortion of the nearest neighbours (B1 or B2 modes) and
(b) appropriate points for collecting data.

Figure 4(a) shows the dependence of the defect mode’s frequency splitting on the relative
amplitude of the distortion for the B1 and B2 modes. Here we present the data obtained using
the supercell plane-wave technique (dashed lines) and the FDTD calculations (solid line). First,
we note that the data calculated using both techniques are in reasonable agreement. Second,
the tangent of the slope angle gives the vibronic constant. We note that the relative slope of the
curve for the B1 mode is two and half times greater than that for the B2 mode. This supports
our expectation that the diagonal matrix element V B1

xx , which determines the splitting by the
B1 mode, should be larger than the non-diagonal matrix element V B2

xy , which determines the
splitting by the B2 mode. Third, the magnitude of the defect level splitting shows a fairly linear
scaling with distortion amplitude for both the perturbations. This is an obvious consequence
of the linear approximation of the vibronic potential, which is valid for small distortions of the
lattice. It is worth mentioning that, in spite of the fact that coupling of the defect state with the
E vibronic mode is forbidden by symmetry in the first approximation of the perturbation theory
(including only linear terms in the expansion of the vibronic potential), it however does exist in
the second approximation when the second-order vibronic terms V(2) ∼ ∂2

∂r2 (
1
ε
)R2 are included.

In this case, the defect level splitting is proportional to the square of the distortion amplitude.
The dependence of the defect mode’s frequency splitting on the square of the distortion’s
relative amplitude for the E vibronic mode is shown in figure 4(b). We note that the defect
level splitting appears only for a relatively large lattice distortion (0.1a < �r < a) and shows
linear scaling with the square of the distortion. The disagreement between the plane-wave and
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Figure 4. The dependence of the doubly degenerate defect state’s frequency splitting on the relative
amplitude of the distortion for the case of coupling the defect state with the B1,2 (a) and E (b)
vibronic modes. The data obtained from the supercell plane-wave and FDTD calculations are
shown by dashed and solid lines, respectively.

FDTD calculations noticeable in figure 4(b) is a consequence of the poor convergency of the
FDTD technique for the E mode. A better agreement between the plane-wave and FDTD data
should be achieved with a finer FDTD grid.

In this paper we have studied the effect of splitting the doubly degenerate defect level of
a square two-dimensional photonic lattice using Jahn–Teller coupling with lattice vibrations.
In the static approximation, the effect shows a linear scaling of the magnitude of the frequency
splitting with the amplitude of the lattice distortion. The symmetry of the split photon defect
mode is shown to be driven by the symmetry of the lattice distortion or the corresponding
vibronic mode. The condition for the effect, in the dynamic case, is that V α�r > K , where K
is the kinetic energy of the vibration determined by the amplitude of the displacement and the
mass of the rods. As a matter of fact, the constant V α determines the splitting of the states. We
can estimate this from a tangent of the slope of curves in figure 4. For the case of the B1 mode,
the estimate gives V ∼ 0.1 (in relative units). This requires that the velocity of the lattice
vibrations should satisfy inequality v2 < 2(V �r)/m (where v is the velocity of the vibrations
and m is the mass of the rods). For the case of a photonic crystal with a nanometre-scale lattice
subject to the B1 vibration with amplitude �r/a = 0.1, this indicates that the vibronic mode
can be frozen in this case if v < 104 m s−1 and the frequency of the vibration f < 106 s−1. In
reconfigurable artificial photonic crystals, these parameters may be tuned to satisfy the above
inequality.

In conclusion, we have described briefly possible applications of the Jahn–Teller distortion.
Light incident on a photonic crystal with a square lattice and subject to the B1 or B2 vibrations
will interact with all the appropriate defect states with field distributions that are non-orthogonal
to the direction of propagation of the light in the lattice. The straightforward way to implement
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the effect is to construct a photonic crystal on a piezoelectric substrate that gives the required
distortion of the lattice near the defect [11]. This distortion could, for example, be used
for optical switching or for improve guiding efficiency at the corners of sharp bends in
optical waveguides. More sophisticated designs can include the coupling of elastic and
electromagnetic waves in a lattice that is periodic in both dielectric and acoustic constants.
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